Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
Microorganisms ; 10(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630453

RESUMO

Invasive fungal infections (IFI) have significantly increased over the past years due to advances in medical care for the at-risk immunocompromised population. IFI are often difficult to diagnose and manage, and can be associated with substantial morbidity and mortality. This study aims to contribute to understanding the etiology of invasive and subcutaneous fungal infections, their associated risk factors, and to perceive the outcome of patients who developed invasive disease, raising awareness of these infections at a local level but also in a global context. A laboratory surveillance approach was conducted over a seven-year period and included: (i) cases of invasive and subcutaneous fungal infections caused by filamentous/dimorphic fungi, confirmed by either microscopy or positive culture from sterile samples, (ii) cases diagnosed as probable IFI according to the criteria established by EORTC/MSG when duly substantiated. Fourteen Portuguese laboratories were enrolled. Cases included in this study were classified according to the new consensus definitions of invasive fungal diseases (IFD) published in 2020 as follows: proven IFI (N = 31), subcutaneous fungal infection (N = 23). Those proven deep fungal infections (N = 54) totalized 71.1% of the total cases, whereas 28.9% were classified as probable IFI (N = 22). It was possible to identify the etiological fungal agent in 73 cases (96%). Aspergillus was the most frequent genera detected, but endemic dimorphic fungi represented 14.47% (N = 11) of the total cases. Despite the small number of cases, a high diversity of species were involved in deep fungal infections. This fact has implications for clinical and laboratory diagnosis, and on the therapeutic management of these infections, since different species, even within the same genus, can present diverse patterns of susceptibility to antifungals.

4.
J Fungi (Basel) ; 7(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418997

RESUMO

Identification of Aspergillus to species level is important since sibling species may display variable susceptibilities to multiple antifungal drugs and also because correct identification contributes to improve the knowledge of epidemiological studies. Two retrospective laboratory studies were conducted on Aspergillus surveillance at the Portuguese National Mycology Reference Laboratory. The first, covering the period 2017-2018, aimed to study the molecular epidemiology of 256 Aspergillus isolates obtained from patients with respiratory, subcutaneous, or systemic infections and from environmental samples. The second, using our entire collection of clinical and environmental A. fumigatus isolates (N = 337), collected between 2012 and 2019, aimed to determine the frequency of azole-resistant A. fumigatus isolates. Aspergillus fumigatus sensu stricto was the most frequent species in both clinical and environmental samples. Overall, and considering all Aspergillus sections identified, a high frequency of cryptic species was detected, based on beta-tubulin or calmodulin sequencing (37% in clinical and 51% in environmental isolates). Regarding all Fumigati isolates recovered from 2012-2019, the frequency of cryptic species was 5.3% (18/337), with the identification of A. felis (complex), A. lentulus, A. udagawae, A. hiratsukae, and A. oerlinghauensis. To determine the frequency of azole resistance of A. fumigatus, isolates were screened for azole resistance using azole-agars, and 53 possible resistant isolates were tested by the CLSI microdilution reference method. Nine A. fumigatus sensu stricto and six Fumigati cryptic isolates showed high minimal inhibitory concentrations to itraconazole, voriconazole, and/or posaconazole. Real-time PCR to detect cyp51A mutations and sequencing of cyp51A gene and its promoter were performed. The overall frequency of resistance to azoles in A. fumigatus sensu stricto was 3.0%. With this retrospective analysis, we were able to detect one azole-resistant G54R mutant A. fumigatus environmental isolate, collected in 2015. The TR34/L98H mutation, linked to environmental transmission route of azole resistance, was the most frequently detected mutation (N = 4; 1.4%). Our findings underline the demand for correct identification and susceptibility testing of Aspergillus isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...